Full Length Research Paper

Synthesis and Characterization of Two New Oxo-centered Trinuclear Complexes of Manganese and Iron

Haman Tavakkoli*, Arezoo Ghaemi, Fouad Mohave

Department of Chemistry, Science and Research Branch, Islamic Azad University, Khouzestan, Iran
*Corresponding author: h.tavakkoli@khouzestan.srbiau.ac.ir

Received 1 May 2013; Accepted 3 June 2013

Abstract. Two new oxo-centered trinuclear complexes, one of them a mixed-valence complex \([\text{Mn}_2\text{MnO(CCl}_3\text{CO}_2\text{H}_2\text{O})_3\text{NO}_3] \) (1) and the other, mixed-metal complex of \([\text{Fe}_2\text{MnO(CCl}_3\text{CO}_2\text{H}_2\text{O})_3\text{NO}_3] (2)\) were synthesized by the direct reaction between metal nitrates and trichloroacetic acid. These complexes were characterized by elemental analyses (CHN), atomic absorption spectroscopy and spectral (IR, electronic) studies. These are new types of oxo-bridged mixed-metal complexes in which the carboxylate ligand is trichloroacetic acid. The UV spectra of the complexes exhibited strong bands in the region 213 and 257 nm which are related to the \((\pi \rightarrow \pi^*)\) and \((n \rightarrow \pi^*)\) transitions of the pyridine and \(\text{H}_2\text{O}\) ligands, respectively. The IR spectra of these compounds showed two strong stretching vibrations bands, indicating a bridging coordination mode of the carboxylic group of the ligand in the complexes.

Keywords: oxo-centered; trinuclear complexes; carboxylic ligand; IR spectra.

1. INTRODUCTION

Transition-metal carboxylate chemistry has played a key role in the conceptual development of modern inorganic chemistry (Kim and Cho, 2004). The current interest in the trinuclear, oxo-centered metal carboxylate assemblies of the general composition \([\text{M}_2\text{O(OOCR)}_3\text{L}_2] \) (where M= trivalent 3-d metal, RCOO=carboxylic acid (R = CH\(_3\), Ph, etc) L= monodentate ligand) is due to these complexes have served as important models to test theories of magnetic and electronic coupling between metal ions (Beattie et al., 2003 and Gavrilenko et al., 2002). They are particularly valuable as frame works for systematically studying metal-metal interactions in clusters and constitute an important class of compounds in transition metal chemistry. They have been characterized with a wide variety of first-row and heavier transition metals, with mixed-metal (Blake et al., 1998) and mixed-valency combinations (Wu et al., 1998).

Electron transfer interactions, and subtle distortions from regular structures, can be detected by their effects on molecular vibrations. These are valuable precursors for the synthesis of higher nuclearity clusters exhibiting interesting magnetic properties. Surprisingly, little attention has been paid to the consideration of substitution properties, with only a few reports of comparative studies regarding the redox properties when the terminal ligand \(L\) changes. There is interest in establishing how substitution in the Carboxylate Bridge affects the liability of the terminal ligand and the redox potential of the metal centers. These carboxylate complexes are of additional interest when the carboxylate is unsaturated, because there is a potential scope for further polymerization in the solid state by cross-linking of the substituents (Chavan et al., 2001 and Maragh et al., 2005). Trinuclear \(\mu_1\),-oxo-bridged iron carboxylate complexes have been studied in great detail (Sorai et al., 1986 and Woehler et al., 1986), whereas analogous mixed-valence manganese-carboxylate complexes have been the object of only limited investigation to date. Each carboxylate anion spans two metal centers at the periphery of the \([\text{M}_3(\mu_1\text{-O})]^6\) core, while the neutral monodentate ligands occupy the remaining coordination sites on each metal center, and as a result the coordination around the metal center is approximately octahedral (Fig.1)

In previous studies, we reported fabrication of some trinuclear oxo-centered complexes with saturated and unsaturated carboxylate ligands (Yazdanbakhsh et al., 2010 and Tavakkoli et al., 2011 and Yazdanbakhsh et al., 2009). In this paper, the syntheses and characterization of mixed-valence and mixed-metal clusters are reported. These are, however, limited to clusters coordinated by relatively small organic ligands.
2. EXPERIMENTAL

2.1. Materials

All starting materials, except (N-n-Bu₄MnO₄), used in this study were analytical grade and purchased from Merck.

Fig. 1: Schematic representation of the oxo-centered trinuclear clusters structure [M₃O(RCOO)₆(L)₃]⁺

N-n-Bu₄MnO₄: This material was prepared, as outlined in the literature (Yazdanbakhsh et al., 2007), by mixing aqueous solutions of KMnO₄ (5.00 g, 31.6 mmol) and N-n-Bu₄Br (12.00 g, 37.2 mmol) with vigorous stirring to give a total volume of ca. 200 ml. The immediate purple precipitate was collected by filtration, washed thoroughly with distilled water and diethyl ether and dried in vacuum at ambient temperature: yield > 90%. The C, H and N analyses were realized on a Thermo Finnigan Flash model EA1112 elemental analyzer. The atomic absorption analyses were performed on a Shimadzu model AA-670 atomic absorption spectrometer. The IR spectra of KBr discs (600–4000 cm⁻¹) were recorded on a Buck 500 spectrometer. The electronic spectra were registered in the range of 200–600 nm on a Perkin-Elmer 1600 spectrometer.

Preparation of [Mn₂MnO(CCl₃CO₂)₆(Py)₃]

N-n-Bu₄Br (12 g, 37.2 mmol) was added to an aqueous solution of KMnO₄ (5 g, 31.6 mmol) under vigorous stirring. The immediately formed purple precipitate was collected by filtration, washed thoroughly with distilled water and diethyl ether and dried in vacuum at room temperature. Then Mn(OOCMe)₂₄H₂O (10 mmol, 2.5 g) and trichloroacetic acid (54 mmol, 8.83 g) were dissolved in a solvent mixture comprising pyridine (7 ml) and absolute ethanol (15 ml). The resulting solution was stirred while solid N-n-Bu₄MnO₄ (3.5 mmol, 1.25 g) was added in small portions and stirred to give a dark brown homogeneous solution. This solution was allowed to stand undisturbed for 48 h and the resulting large octahedral-shaped crystals were collected by filtration, washed with pyridine and dried in vacuum. (Yield: 72%), m.p.: 185°C, Anal. Calc. for C₂₁H₁₄Cl₁₈Mn₃O₁₃: C, 23.26; H, 1.07; N, 3.01; Mn, 11.84%. Found: C, 22.96; H, 1.15; N, 3.11; Mn, 11.65%.

Preparation of [Fe₂MnO(CCl₃CO₂)₆(H₂O)₃].NO₃

A mixture of Fe(NO₃)₃.9H₂O (1.08 g, 2.68 mmol) and Mn(NO₃)₂.4H₂O (0.34 g, 1.34 mmol) was dissolved in 25 ml deionized water and was refluxed for 10 min. Then, NaCl₃CO₂ (2.22 g, 12 mmol) was added and the reflux continued for 5 h. The resulting brown solution was allowed to cool and stored for 2 days at 20°C. The black crystals were filtered off, washed copiously with Et₂O and dried in vacuum. (Yield: 85%), m.p.: 275°C, Anal. Calc. for C₃₇H₁₃₂Cl₁₈Fe₃MnNO₂₅: C, 10.89; H, 0.45; N, 1.06; Fe, 8.47; Mn, 4.16%. Found: C, 10.64; H, 0.62; N, 1.14; Fe, 8.85; Mn, 4.39%.

3. RESULTS AND DISCUSSION

3.1. IR Spectroscopy

The IR spectra of these complexes are shown in Fig. 2 that indicate the presence of carboxylate, H₂O and {M₃O} groups. The observed vibrational frequencies ν.sym(COO) and ν.asym(COO) for the
carboxylate ligand support the presence of bridging coordinated carboxylates in all the complexes. For the mixed-metal complexes, it appears from the carboxylate stretching frequencies that all six ligands are approximately equivalent and they are best represented as bidentate bridges. For a new series of trinuclear mixed metal complexes, Cannon assigned the IR spectra and identified the vibrational modes of the central M$_3$O core (Baranwal et al., 2009). He found that the reduction in site geometry from D$_3$h to C$_2$v lifted the degeneracy of the asymmetric M$_3$O stretches and two bands were seen. These spectra indicate a single pair of carboxylate stretching vibrations at 1601 and 1425 cm$^{-1}$ for (1), 1615 and 1430 cm$^{-1}$ for (2) assigned to υ_{asym}(COO) and υ_{sym}(COO), respectively. The difference ($\Delta \upsilon = \upsilon_{\text{asym}}$(COO) – υ_{sym}(COO)) is 176 and 185 cm$^{-1}$. In the IR spectrum of complex 2, the characteristic vibration frequencies for H$_2$O groups appear at ~3500–3600 cm$^{-1}$. For identification of the metal-oxygen bonds of M$_3$O group, IR spectra in the range of 800-400 cm$^{-1}$ were used (Boudalis et al., 2002). The band observed for asymmetric vibration associated with the M$_3$M’O unit splits into two components, A$_1$ and B$_2$ (Cannon and White, 1988). These spectra show the characteristic bands for the valence oscillations υ_{as}(Fe$_2$MnO) in the region 565 cm$^{-1}$ (A$_1$) and 420 cm$^{-1}$ (B$_2$) and υ_{as}(Mn$_3$O) is observed at 580 cm$^{-1}$. All data of IR spectroscopy for these compounds are given in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>υ_{asym}(COO)</th>
<th>υ_{sym}(COO)</th>
<th>υ(M$_3$O)</th>
<th>υ(C-H)</th>
<th>υ(C-Cl)</th>
<th>υ(O-H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1601</td>
<td>1425</td>
<td>580</td>
<td>3036</td>
<td>824</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>1615</td>
<td>1430</td>
<td>420-565</td>
<td>2970</td>
<td>816</td>
<td>3570</td>
</tr>
</tbody>
</table>

Fig. 2: IR spectra of [Mn$_3$Mn(O)(CCl$_3$COO)$_6$(py)$_3$] (a) and [Fe$_2$Mn(O)(CCl$_3$COO)$_6$(H$_2$O)$_3$].NO$_3$ (b) (KBr pellet)
3.2. Electronic spectroscopy

The electronic spectra of the trinuclear complexes can be interpreted to a good approximation in terms of the individual metal ions, together with ligand-metal charge transfer transitions. The electronic spectra of the complexes were recorded in the range of 200-600 nm in dichloromethane solution. The spectra of the oxo-centered complexes 1 and 2 show the characteristic bands provided by both metal ions. The UV spectra of the complex 1 and 2 (Fig.3) exhibited a strong bands in the region 257 and 213 nm which is related to the (π → π*) transitions of the pyridine (Py) ligand (Chen et al., 2005) and (n → π*) transition of the water ligand.

The Vis spectra for complex 1 and 2 are shown in Fig. 4. As is obvious in this Figure, broad band in the region 480 nm, which can be assigned to the transition from 3Eg to 3T2g, should be attributed to the existence of Mn(III) (d4) ion in these complexes. Obtained data can be assigned and characterized based on other literature (Mizoguchi et al., 1999).

4. CONCLUSION

Two new Oxo-centered trinuclear complexes with the general formula [M2M'O(CCl3COO)6(L)3] where M = Mn, M' = Mn, L = py (1); M = Fe, M' = Mn, L = H2O (2) were prepared and studied by elemental analysis (CHN), electronic and infrared spectroscopy and atomic absorption spectroscopy. All compounds have a similar μ3-oxo structure. The IR investigations of these compounds show intensive absorption bands, which are assigned to νasym(COO) and νsym(COO) vibrations. Furthermore, the three metal ions are bound to a central oxygen atom and adjacent metal ions are bridged by two carboxylate ligands. In addition, for mixed metal complex 2, the atomic absorption data show a statistical 2:1 disorder of iron and manganese atoms, respectively.
Fig. 4: Vis spectra of the [Mn₂MnO(CCl₃CO₂)₆(Py)₃] (a) and [Fe₂MnO(CCl₃CO₂)₆(H₂O)₃].NO₃ (b)

REFERENCES

Boudalis AK, Lalioti N, Spyroulias GA, Raptopoulou CP, Terzis A(2002). Novel Rectangular [Fe₄(μ₄-O)(μ-OH)2][O]/[Fe₄(μ₃-O)2]8+ Core Topology in the FeIII/RCO₂-/phen Reaction Systems (R = Me, Ph; phen = 1,10-Phenanthroline): Preparation and Properties of [Fe₄(OOH)(OH)₂(O₂CM-e)₄(phen)₄][ClO₄]₃, [Fe₄O₂(O₂CPh)₇(phen)₂][ClO₄], and [Fe₄O₂(O₂CPh)₈(phen)₂]. Inorg. Chem, 41: 6474-6487.

Dr. Haman Tavakkoli is an assistant professor in inorganic chemistry in Islamic Azad University, Khuzestan Science and Research Branch, Iran. He received his M.Sc and Ph.D degree in inorganic chemistry from Ferdowsi University of Mashhad, Iran in 2007 and 2012, respectively. He has published 14 refereed articles in valid ISI journals and 10 scientific articles in conference proceedings. Dr. Tavakkoli’s fields of expertise are in coordination chemistry, nanomaterials chemistry and physics and environmental chemistry.

Dr. Arezoo Ghaemi obtained her Bachelor’s degree from the Ferdowsi University of Mashhad, Iran in chemistry in 2004. She later bagged her Master’s and Doctorate degrees in Analytical chemistry from Ferdowsi University of Mashhad, Iran in 2006 and 2012, respectively. She has graduated with first grade in Ph.D degree. At present, Dr. Ghaemi is an assistant professor in analytical chemistry in Islamic Azad University, Khuzestan Science and Research Branch, Iran. She has published numerous articles in ISI journals and conference proceedings.

Fouad Mohave is a MSc student in Organic Chemistry Science and Research Branch, Islamic Azad University, Khuzestan, Iran.